ECE 3424 – Intermediate Electronic Circuits

Textbooks: Giorgio Rizzoni, Principles and Applications of Electrical Engineering, 4th Edition, McGraw-Hill 2004

Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, 5th Edition, Oxford 2004

I. Semiconductors and Diodes

- A. Electrical Conduction in Semiconductor Devices
- B. The pn Junction and the Semiconductor
- C. Circuit Models for the Semiconductor Diode
 - a. Large-Signal Diode Models
 - b. Small-Signal Diode Models
 - c. Piecewise Linear Diode Model
- D. Rectifier Circuits
 - a. The Full-Wave Rectifier
 - b. The Bridge Rectifier
- E. DC Power Supplies, Zener Diodes, and Voltage Regulation

II. Field-Effect Transistors: Operation, Circuit Models, and Applications

- A. Classification of Field-Effect Transistors
- B. Overview of Enhancement-Mode MOSFETs
 - a. Operation of the *n*-Channel Enhancement-Mode MOSFET
 - b. Biasing MOSFET Circuits
 - c. Operation of the *p*-Channel Enhancement-Mode MOSFET
- C. MOSFET Amplifiers
- D. MOSFET Switches
 - a. Digital Switches and Gates
 - b. Analog Switches

III. Bipolar Junction Transistors: Operation, Circuit Models, and Applications

- A. Transistors as Amplifiers and Switches
- B. Operation of the Bipolar Junction Transistor
 - a. Determining the Operating Region of a BJT
 - b. Selecting an Operating Point for a BJT
- C. BJT Switches and Gates

IV. AC Transistor Equivalent-Circuit Models

- A. MOSFET High-Frequency Models
- B. MOSFET Amplifier Analysis
- C. The CMOS Digital Logic Inverter

V. Electronic Instrumentation and Measurements

- A. Measurement Systems and Transducers
 - a. Measurement Systems
 - b. Sensor Classification
 - c. Motion and Dimensional Measurements
 - d. Force, Torque, and Pressure Measurements
 - e. Flow Measurements
 - f. Temperature Measurements
- B. Wiring, Grounding, and Noise
 - a. Signal Sources and Measurement System Configurations

- b. Noise Sources and Coupling Mechanisms
- c. Noise Reduction
- C. Signal Conditioning
 - a. Instrumentation Amplifiers
 - b. Active Filters
- D. Analog-to-Digital and Digital-to-Analog Conversion
 - a. Digital-to-Analog Converters
 - b. Analog-to-Digital Converters
 - c. Data Acquisition Systems
- E. Comparator and Timing Circuits
 - a. The Op-Amp Comparator
 - b. The Schmitt Trigger
 - c. Multivibrators
 - d. Timer ICs: The NE555
- F. Other Instrumentation Integrated Circuits Amplifiers
 - a. DACs and ADCs
 - b. Frequency-to-Voltage, Voltage-to-Frequency
 - c. Converters, and Phase-Locked Loops
 - d. Other Sensor and Signal Conditioning Circuits
- G. Data Transmission in Digital Instruments
 - a. The IEEE Bus
 - b. The RS-Standard
 - c. Other Communication Network Standards

VI. Communication Systems

- A. Introduction to Communication Systems
 - a. Information, Modulation and Carriers
 - b. Classification of Communication Systems
 - c. Communication Channels
- B. Spectral Analysis
 - a. Signal spectra
 - b. Periodic Signals: Fourier Series
 - c. Non-periodic Signals, Fourier Transform
 - d. Bandwidth
- C. Amplitude Modulation and Demodulation
 - a. Basic Principle of AM
 - b. AM Demodulation; Integrated Circuit Receivers
- D. Frequency Modulation and Demodulation
 - a. Basic Principle of FM
 - b. FM Demodulation
- E. Examples of Communication Systems
 - a. Global Positioning System (GPS)
 - b. Radar
 - c. Sonar
 - d. Computer Networks
 - e. Wireless Networks and Personal Communication Systems
 - f. The Internet